- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Brennan, Christian (3)
-
Gong, Yu (3)
-
Hu, Ming (3)
-
Kuthirummal, Narayanan (3)
-
Teklu, Alem (3)
-
Zhang, Qian (2)
-
Barnes, Taylor (1)
-
Bi, Xiangdong (1)
-
Bielicki, Alexander Donald (1)
-
Cetin, John (1)
-
Chen, Nikki (1)
-
Farias, William Edward (1)
-
Forconi, Marcello (1)
-
Gao, Bo (1)
-
Gong, Cheng (1)
-
Guo, Er-Jia (1)
-
Harris, Nico (1)
-
Jin, Rongying (1)
-
Jo, Kiyoung (1)
-
Joly, Alan G (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Coherent phonons in the Terahertz (THz) regime have gained attention as potential candidates for next-generation high-speed, low-energy information carriers in atomically thin phononic or phonon-integrated on-chip devices. Nevertheless, achieving efficient control of the phonon generation dynamics over THz coherent phonons continues to pose a considerable challenge. In this work, we explore THz coherent phonon generation in exfoliated van der Waals (vdW) flakes of WSe2 on Au (WSe2/Au) and Si (WSe2/Si) by using time-resolved pump–probe spectroscopy. The generation of THz coherent phonons was studied as a function of the WSe2 layer thickness and laser wavelength. Notably, a significant enhancement in THz coherent phonon generation was observed in the WSe2/Au structure, but only within a specific range of WSe2 thicknesses and laser wavelengths. The results from numerical simulations, which consider a self-hybridized optical cavity depending on WSe2 thickness and optical reflectance and Raman spectroscopy measurements, all align well with the time-domain observations of THz coherent phonon generation. We propose that the observed enhancement in THz coherent phonon generation is strongly influenced by light–matter interactions in the WSe2 cavity, a mechanism that may be applicable to a broader range of vdW materials. These findings offer promising insights for the development of THz phononic or phonon-integrated devices.more » « lessFree, publicly-accessible full text available June 19, 2026
-
Gong, Yu; Yang, Zhonghua; Teklu, Alem; Xie, Ti; Kern, Noah; May, Andrew F; McGuire, Michael; Brennan, Christian; Guo, Er-Jia; Kuthirummal, Narayanan; et al (, Ultrafast Science)Optical control of magnons in two-dimensional (2D) materials promises new functionalities for spintronics and magnonics in atomically thin devices. Here, we report control of magnon dynamics, using laser polarization, in a ferromagnetic van der Waals (vdW) material, Fe3.6Co1.4GeTe2. The magnon amplitude, frequency, and lifetime are controlled and monitored by time-resolved pump-probe spectroscopy. We show substantial (over 25%) and continuous modulation of magnon dynamics as a function of incident laser polarization. Our results suggest that the modification of the effective demagnetization field and magnetic anisotropy by the pump laser pulses with different polarizations is due to anisotropic optical absorption. This implies that pump laser pulses modify the local spin environment, which enables the launch of magnons with tunable dynamics. Our first-principles calculations confirm the anisotropic optical absorption of different crystal orientations. Our findings suggest a new route for the development of opto-spintronic or opto-magnonic devices.more » « less
-
Gong, Yu; Bi, Xiangdong; Chen, Nikki; Forconi, Marcello; Kuthirummal, Narayanan; Teklu, Alem; Gao, Bo; Koenemann, Jacob; Harris, Nico; Brennan, Christian; et al (, The Journal of Physical Chemistry B)
An official website of the United States government
